
Encapsulation Application Research of ArcSDE
Access Interface in .Net Environment

Min FENG, Qingsheng SHANG, Jianwen GUO, Yingchun GE
Cold and Arid Regions Environmental and Engineering Research Institute

Chinese Academy of Science
Lanzhou, China

diverge@163.com

Abstract—The GIS and Digital Roadbed System of the
Qinghai-Tibet Railroad is developed in the .Net environment and
designed to store and to manage the information along the
Qinghai-Tibet railroad, which is 1118km long and is constructed
in the regions more than 4000m high. Spatial data Management
plays a very important role in this GIS, and ArcSDE was selected
to implement the management of mass spatial data. How to
connect ArcSDE and exchange vector and raster spatial data in
this system is a key technique. There are three approaches, which
are recommended officially, can be used for client to connect
ArcSDE, but none of them can meet the needs of spatial
information storage and management in the GIS and Digital
Roadbed System of the Qinghai-Tibet Railroad. This paper
explained a solution of encapsulating the ArcSDE Client API for
C programmers into the form of .Net managed code with C++
programming language. The final program not only provides a
solution to resolve the problem of spatial data management, but
also bring forward a flexible interface which followed the
principle of OOP.

Keywords- Spatial Database; System Encapsulation; .Net;
Qinghai-Tibet Railroad

I. INTRODUCTION

A. Background
Spatial database is very important for every Geographic

Information System (GIS), and it is the key difference between
GIS and general information system [1]. Spatial database can
be classified into two kinds: local spatial database and
distributed spatial database. The local one is appropriate to the
situations that the system do not need to access data through
network and is unsuitable to deal with the mass data for the
limitation of client computer. However, distributed spatial
database is much flexible: you can separate the spatial
database from the GIS client and put it on another computer.
So you can offer the spatial database with high performance
computer, in order to give full play to the spatial database.
Distributed spatial database also share data between different
clients, and those clients don’t need store the duplicate of the
data, in addition, the modification of the spatial data can be
reflected to all clients.

ArcSDE is a comparatively ripe distributed spatial
database management system which is developed by ESRI，
and it is used to manage the geographical information in the
Qinghai-Tibet railroad construction.

B. Ways of accessing data from ArcSDE
Programmers can access data from ArcSDE via three

different ways [2]:
• ArcObjects: It is a powerful GIS software components

library on which ArcMap and ArcCatalog are built.
Programmers can access data in ArcSDE through the
GeoDatabase data access objects, which is a subset of
ArcObjects.

• ArcSDE Application Programming Interface (API):
ESRI provides two kinds of ArcSDE API: C and Java.
These APIs are compliant with the Open GIS
Consortium (OGC) simple features specification [2].

• Structured Query Language (SQL): While ArcSDE is a
gateway between GIS client and relational database, all
features in a GeoDatabase are implemented as a set of
relational table. Some of these tables represent
collections of features. Other tables represent
relationships between features, validation rules and
attributed domains. So Programmers can access data in
those relational tables by SQL directly.

C. Comparison between ways of accessing data
It can give full play to ArcSDE through ArcObjects

accessing ArcSDE. Furthermore, ArcObjects can be used in
both Win32 and .Net environments, and presents
object-oriented interfaces. However, ArcObjects 8.x can not be
used with ArcGIS independently, and it is much expensive; in
addition, it needs need many computer resources to run it. So it
does not suit the requirements of system developing using
ArcObjects singly to access spatial data; Accessing GIS data
through SQL is much inconvenient, because you have to
understand how the GIS data is stored in relational database
and it is dangerous to destroy the GeoDatabase if you make
some mistakes when you try to modify some GIS data or
relationships. Finally, we decide to adopt C Client API to
access ArcSDE, in order to reduce the development and
operation cost.

Another question we meet is that GIS and Digital Roadbed
System of the Qinghai-Tibet Railroad is developed in .Net
Environment, but ESRI does not provide ArcSDE API for
.Net. Although we can import the C API to C# source file, it
is too difficult because there are about 30 C structures, 21
enumerations and 757 functions [3]. We can not ensure all
those elements will work well after being imported. Unlike

This work is supported by the innovation project of CAS (KZCX1-SW-04), innovation project of CAREERI, CAS (220014-016A)

0-7803-9051-2/05/$20.00 (C) 2005 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
25 JUL 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Encapsulation Application Research of ArcSDE Access Interface in .Net
Environment

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cold and Arid Regions Environmental and Engineering Research
Institute Chinese Academy of Science Lanzhou, China

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001850, 2005 IEEE International Geoscience and Remote Sensing Symposium Proceedings
(25th) (IGARSS 2005) Held in Seoul, Korea on 25-29 July 2005.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Win32 environment, all code written for .Net program will be
compiled to Common Intermediate Language (CIL), which
finally runs on the Common Language Runtime (CLR). .Net
programs do not locate or release memory directly; CLR does
this work [4]. If we import C library into .Net Environment,
we must transfer information between Win32 and .Net
Environments, and it is not an easy task.

C++ is derived from C programming language, and it is
compatible with C. Microsoft developed Visual Studio .Net in
2002, and extended C++ to support .Net programming, which
is called Managed C++ [4]. We think Managed C++ is the best
choice to resolve the problem of integrating ArcSDE C API
with the GIS and Digital Roadbed System of the Qinghai-Tibet
Railroad.

II. OBJECTS
We try to encapsulate ArcSDE C API into .Net Assembly,

which can be loaded to .Net Environment, and meet the needs
of managing GIS data in GIS and Digital Roadbed System of
the Qinghai-Tibet Railroad. The work of encapsulation does
not only transfer the functions of ArcSDE C API to the object
system, but also design an OOP (Object-Oriented
Programming) profile of C API architecture.

III. ARCHITECTURE OF ARCSDE C API
The architecture of ArcSDE C API follows the Simple

Feature Specification of OGC [2]. All ArcSDE C API
Functions can be divided into 12 groups, and each group
includes many functions, structures and enumerations [5].

A. Groups of ArcSDE C API
• Database Connections and Server Instances: build
connection between client and ArcSDE, on which almost
all operations are built.

• Vector Layer Management: Layer is a fundamental
element for GIS data management; this group of
ArcSDE C API offers operations on layers, such as
adding, deleting layer and modifying layer’s attributes.

• Geometry Function: offer operations on geometry,
such as creating, decompounding features and
retrieving the topologic relationship between features.

• Coordinate Reference: offer operations to define
coordinate reference and spatial reference, and modify
their attributes.

• Projection Engine: offer operations to define
projection, as well as functions to project GIS data
between two different projections.

• Stream and Query Management: Stream is used to
transfer data between ArcSDE and client, so it is very
fundamental for implementing queries and modifies on
GIS data.

• Table Management: provide functions to manage the
non-spatial tables.

• Log files: offer functions on log information.

• Raster Data Management: offer operations on GIS
data which stored in GIS raster form.

• Versioned Database Management: offer operations on
ArcSDE versions, which are used to provide more
flexible mechanism on modifying GIS data.

• Locators: offer supports on address geocoding.

• Application Development Support: offer supports on
program debug.

IV. SCHEMAS OF ENCAPSULATING ARCSDE C API INTO
.NET ENVIRONMENT

Two schemata were designed to encapsulate ArcSDE C
API into .Net environment. “Fig 1” shows those two
schemata.

Figure 1. Two Schemas of Encapsulate ArcSDE C API to .Net

A. 2-tier schema
There are 2 tiers of C++ codes between ArcSDE C

API and .Net application. One is written by native C++,
and provokes the ArcSDE C API directly; the other is
written by managed C++, and all classes in the latter are
located under the SDE_Client namespace. Each class of
this tier comprises the corresponding class of the former
tier, and takes charge to transfer information between
Win32 environment and .Net CRL. Each operation
provoked by .Net clients is processed by managed C++
classes which convert the managed information to win32
format, and then is passed to the native classes which call
the ArcSDE C API. After the operation finished the result
transfers to the .Net clients reversely.

B. 1-tier schema
Only one tier is designed in this schema, and the

classes in the tier not only transfer managed information
between Win32 environment and .Net CRL, but also pass
the parameters to ArcSDE C API and bring the result
back to the .Net Client.

V. COMP ARISON BETWEEN TWO SCHEMATA
According to the comparison, we finally decided to adopt

1-tier schema to implement the encapsulation of raster
management, in respect that raster has more complex
Relationships between classes, and the performance is much
important; and adopt 2-tier schema to implement the
encapsulation of others, for it fits both Win32 and .Net
environments.

TABLE 1. COMPARISON BETWEEN TWO SCHEMATA

Schema Advantages Disadvantages

A

 If the managed C++ tier is
removed, the native C++ tier
can be used in Win32
Environment;

 Each layer does its own job,
so the errors are easy to handle.

 Every operation must be
implemented in two tiers, so it is
inconvenient to handle the
complex Relationships between
the classes;

 The workload is relatively
large；

B

 It can implement easily
complex Relationships between
classes;

 There is less workload of the
1-tier schema than 2-tier
schema;

 Performance is much better.

 It can’t be used in Win32
environment;
 It is apt to make mistakes.

VI. ARCHITECTURE OF ENCAPSULATION

A. Modules
All components can be classified into 7 groups after being

encapsulated:
• Connection：Encapsulates the ArcSDE C API related to

connections, maintaining the connections between
clients and ArcSDE, establishing concurrency control
for threaded client applications, and managing
transactions.

• Stream：Encapsulates the ArcSDE C API related to
stream, and providing functions to query, add, delete
and modify the features and tables. It also supports
different data types, such as blob, double, date, float,
integer, string, smallint, as well as shape.

• Table：Encapsulates the ArcSDE C API related to
non-spatial table, and providing functions to create,
modify and delete tables and structures.

• Shape：Encapsulates the ArcSDE C API related to
geometry and providing functions to generate and
decompose shapes of features

• Projection：Encapsulates the ArcSDE C API related to
coordination reference and projection to support
operations about projection.

• Layer：Encapsulates the ArcSDE C API related to GIS
layer.

• Raster：Encapsulates the ArcSDE C API related to
Raster data management. ArcSDE manages GIS Raster
data by the system which is consisted of Column,
Raster, Band and Tile, so we designed a series of
classes to represent it.

B. Relationships between modules
“Fig 2” shows the relationships between classes and sub
systems, and each sub system is a collection of several
classes which bear on one subject.

Figure 2. Relationships between modules

C. Key points of design
1) Inheriingt from System::IDisposable Interface

.Net CRL manages memory for .Net application and .Net
Garbage Collection (GC) will find and release all memory at
some time [8], so all our classes inherit from
System::IDisposable interface, which defines a single
function:

Void Dispose();
The function is designed to be called when the resource in

the class should be released; furthermore, C# provides another
way to call the Dispose function:

Layer _layer = new Layer();
using(_layer)
{
 // Scope of action
 ...
}
//Dispose will be called automatically by CRL
2) Encapsulating ArcSDE C API

Each ArcSDE C API function does a single job, but some
jobs can be put together, especially a pair of operations on one
item, among which one is to retrieve value from that
information and the other put value to it. Attribute is a kind of
method which is supported by some programming languages
such as C#, Java etc. Although each Attribute consists of two
functions: “get” and “put”, they together act as a single
variable, so we encapsulate each pair of functions on one item
to a single Attribute. There is an example below:

#pragma managed
namespace SDE_Client{
 __gc public class Layer:public System::IDisposable{
 public:
 // Get and set the array size of layer
 __property long get_ArraySize() {
 return this->m_Handle->GetArraySize();
 }
 __property void set_ArraySize(long optimalArraySize){
 return this->m_Handle->SetArraySize(optimalArraySize);
 }
 //...
 };
}

3) Class Initialization
Some ArcSDE C API functions are very special because

they just make preparations for following functions or release
the resources used by foregoing functions, so they ought to be
encapsulated to the constructor of destructor function.
However, native C++ requires there should not make
exceptions in constructor or destructor functions [9], and those
functions do not suit to be called in native C++ constructor or
destructor function. So a Create function is provided to assign
resources and a Close function is provided to release resources.
But managed C++ does not have this limitation, for it can
release unused memory automatically, and we move the
Create function to the constructor function of class, and Close
function to the destructor function. Accordingly, the classes of
managed codes are really user – friendly.

4) Handle Exception
All error information are brought back by the return value

after ArcSDE C API is called, so we have to analyze the value
to understand what is wrong with it and it need many codes to
analyze it. Some programming languages support exceptions
which are much flexible and can bring back more information
about the error than just a single value. We designed
SEException class. When it meets an error, an instance of that
class will be created and sent to the “catch” codes which can
accept the exception type. The class has several attributes, and
each of them store a kind of information about the error.

class SEException
{
public:
 ...

//Error code
Long m_Rc;
//Comment of the error

 std::string m_Comment;
 //Extended error code
 Long m_ExtError;
 //Description of the error
 std::string m_ErrorString1;
 //Extended description of the error
 std::string m_ErrorString2;
 ...
};

5) Structures and Enumerations
There are lots of C structures and enumerations defined in

the ArcSDE C API library, each of them represent a kind of
information. In the work of encapsulation, some structures
were mapped into C++ classes, such as Stream, Connection
etc, and others are yet defined as C++ structures and

enumerations, for example, the GIS point:
public struct Point
{
 double x;
 double y;
 double z
};

6) Auxiliary Functions
Some auxiliary functions are very useful to the work of

encapsulation, and those functions are developed to offer
supports of converting string from Win32 to .Net environment;
return value to Exception and so on.

VII. SUMMARY
Encapsulating ArcSDE C API by managed C++ can be

used not only in .Net environment, but also in Win32
environment by a few modifications. It meets the need of GIS
data managements of GIS and Digital Roadbed System of the
Qinghai-Tibet Railroad, and provides an available choice for
the future GIS development which also uses ArcSDE to
manage GIS data. The Encapsulation is more than conversion
from C to C++, but a design of the architecture following
OOP.

ACKNOWLEDGMENT
This work is supported by the innovation project of CAS

(KZCX1-SW-04), innovation project of the Cold and Arid
Regions Environmental and Engineering Research Institute,
CAS (220014-016A).

REFERENCE
[1] Wang J-Y. Principles of Spatial Information System [M]. Beijing:

Science Press, 2001
[2] Zeiler M. Modeling Our World [M]. Environmental Systems Research

Institute, Inc. 1999.
[3] Environmental Systems Research Institute Inc. ArcSDE Developer Help

[R]. Environmental Systems Research Institute, Inc. 2002.
[4] Microsoft Corporation. MSDN Library for Visual Studio .NET 2003

[R]. Microsoft Corporation. 2003.
[5] West R. Understanding ArcSDE [M]. Environmental Systems Research

Institute, Inc. 2002.
[6] Harris M. Managing ArcSDE Services [M]. Environmental Systems

Research Institute, Inc. 2002.
[7] Open GIS Consortium, Inc. Simple Features Specification for SQL

Revision 1.1 [S]. Open GIS Consortium, Inc. 1999.
[8] Thai T. .NET Framework Essentials [M]. O'Reilly, 2001.
[9] Eckel B. Thinking in C++ [M]. Prentice Hall, 1995.

	Select a link below
	Return to Main Menu

	Select a link below
	Return to Main Menu

